Active Microwave Thermography (AMT)

Logan M. Wilcox
Advisor: Dr. Kristen M. Donnell
µSense Lab, Electrical Engineering
Active Microwave Thermography

Use microwave energy as active excitation method

Two heating mechanisms, depending on material

- Dielectric heating

\[\varepsilon_r = \varepsilon'_r - j\varepsilon''_r \]

store energy

absorb energy

\[Q = \omega \varepsilon_0 \varepsilon''_r |E_0|^2 e^{-2\alpha z} \]
Benefits of AMT

Readily deployable, fast, and non-contact

Capitalize on the legacy of thermography

Can be tailored to the inspection need

- Design the incident signal to heat specific dielectric
- Possibility of localized heating
- May reduce risk of heat damage
- Frequency and Polarization flexibility
AMT System

- DAQ
- Microwave Source and Amplifier
- Horn Antenna
- Sample
- Thermal Camera
AMT Applications

Focus so far has been infrastructure/transportation and aerospace industries

- Corrosion
- Cracks
- Moisture
- Delamination/disbond
- Subsurface defects
- Etc.
Water Ingress
Water Ingress
Uniform Heating
Image Post-Processing
Concluding Remarks

AMT shows strong potential in the aerospace, space, transportation, and infrastructures industries

Current works are divided into two:

- Implementation of uniform heating pattern via metamaterial lens and phased antenna array
- Implementation of image post-processing techniques from traditional thermography